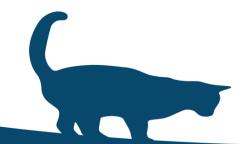


Exploring the Latest Advancements in Feline Hyperthyroidism Treatment with Radioactive Iodine Therapy

Tiarni Johnston BVSc (Hons) MANZCVS (SAIM)
Internal Medicine Resident



Introduction to Hyperthyroidism

- Increased production of thyroid hormones
- 97% = functional adenoma or adenomatous hyperplasia
- 3% = functional thyroid carcinoma
 - ~ 71% will have regional lymph node or lung metastases
- Generally indistinguishable on physical examination

- Now the most commonly encountered endocrine disorder of middle-aged to older cats in Australia and New Zealand
- Age
 - Median age of 12–13 years
 - 5% of cats are <10 years old
- Breeds and genders affected equally

How is hyperthyroidism diagnosed?

Combination of:

- 1. Clinical Signs
- 2. Physical examination findings
- 3. Clinicopathological abnormalities

Diagnosis – History and Physical Examination

Weight loss	85–95%
Polyphagia	60–75%
Polyuria/polydipsia	45-60%
Increased activity, anxiety	30-55%
Vomiting	30–45%
Dyspnea, tachypnea, or panting	20-35%
Diarrhea	15–20%
Large fecal volume	10–20%
Decreased appetite	5–10%
Decreased activity	5–10%
Weakness	5–10%

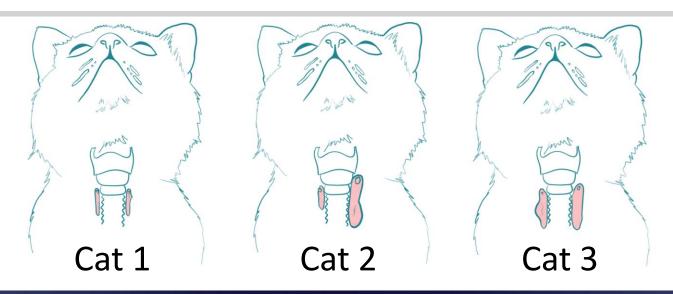
Large thyroid gland	80-95%
Thin (low body condition score)	60-70%
Hyperkinesis	50-65%
Tachycardia	50-60%
Heart murmur	35-55%
Unkempt hair coat, matting, alopecia	15-30%
Gallop rhythm	15–25%
Aggressive	10–15%
Hypertension	10–15%
Increased nail growth	5-10%
Congestive heart failure	1-2%

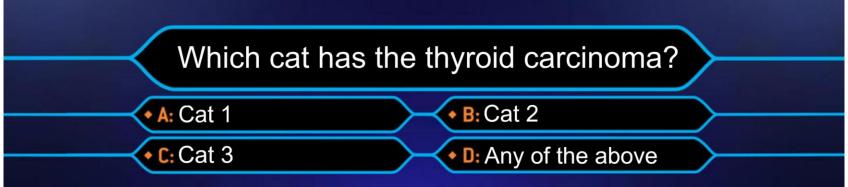
Clinical Signs

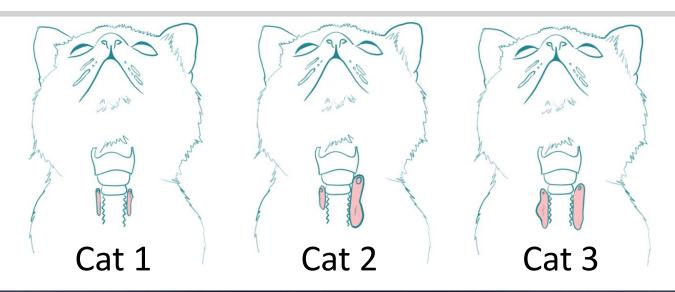
Physical examination findings


'Apathetic hyperthyroidism' is noted in 10% of hyperthyroid cats
They show hyporexia, listlessness and lethargy instead
Due to concurrent non-thyroidal illness

Diagnosis – Physical Examination

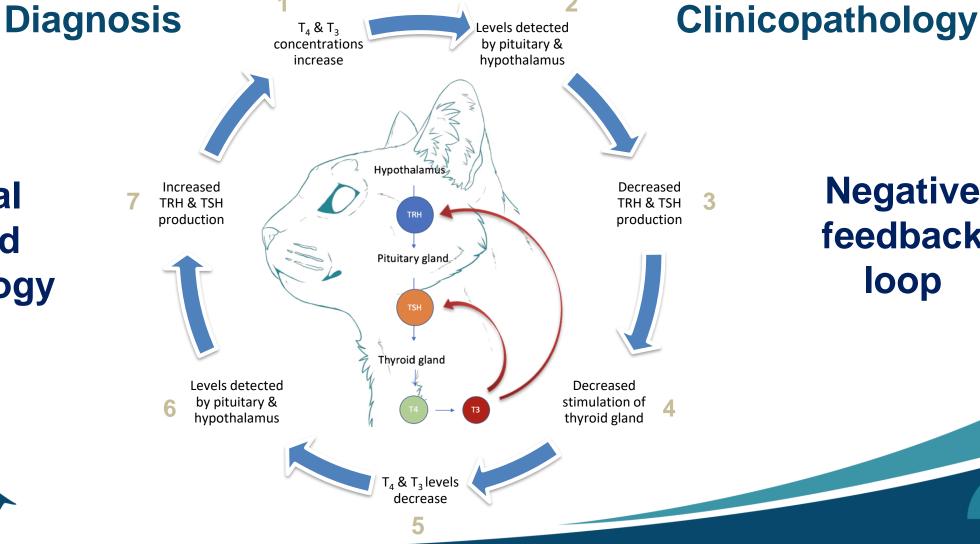

- Severe
- Muge
- Intrathoracic
- **M**ultifocal disease
- Refractory to Antithyroid Drugs


May help clinically identify cats with severe disease or suspected thyroid carcinoma



Diagnosis – Clinicopathology

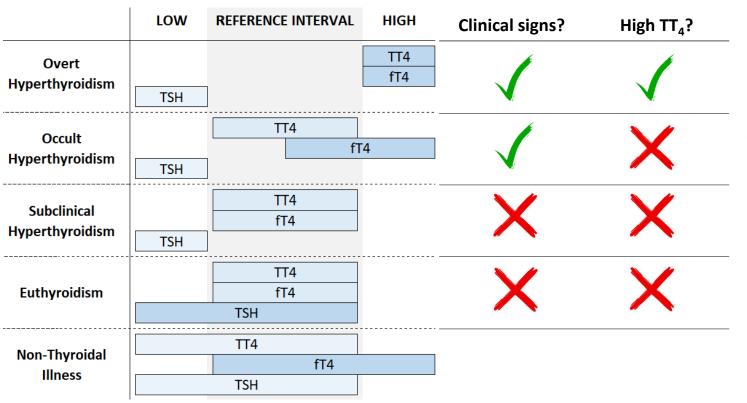
Complete blood count

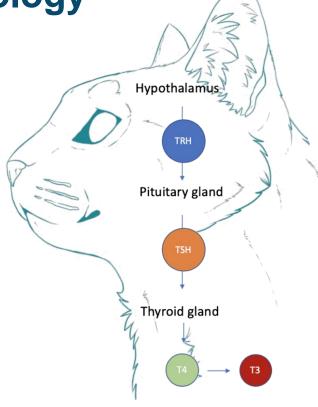

Complete blood count	
Erythrocytosis	30–55%
Anemia	1–5%
Lymphopenia	15–40%
Eosinopenia	15–35%
Leukocytosis	15–20%
Complete urinalysis	
Specific gravity >1.040	40-60%
Specific gravity <1.015	3–6%
Proteinuria (high protein:creatinine>0.4)	30–70%

Serum chemistry profile

High alanine aminotransferase (ALT)	80–90%
High alkaline phosphatase (ALP)	60–75%
High aspartate aminotransferase (AST)	30–45%
Azotemia	20–25%
Hyperglycemia	15–20%
Hyperphosphatemia	10–20%
Hyperbilirubinemia	3–4%
Low vitamin B12 (cobalamin)	13-23%

Normal thyroid physiology




Negative feedback loop

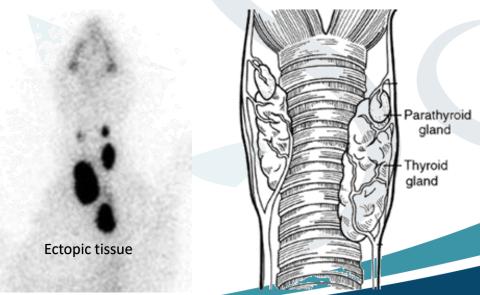
Diagnosis – Clinicopathology

Treatment Options

Treatment Options

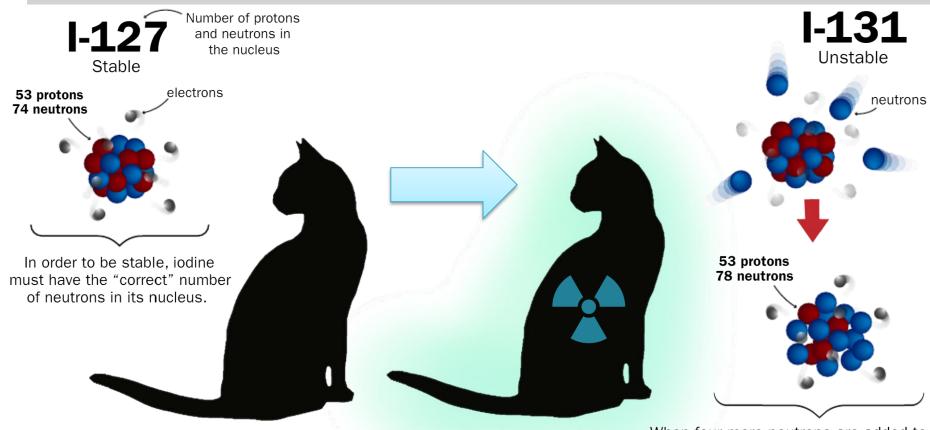
Advantages	Disadvantages	Advantages	Disadvantages
Inexpensive in the short term Reversible No hospitalisation required Adverse effects: uncommon	Possibly expensive long term Daily dosing required Lifelong treatment required Adverse effects in 15% of cats Predisposes to thyroid carcinoma	No tableting required	Cannot be fed ANY other food Cannot be fed to euthyroid cats Indoor cats only Predisposes to thyroid carcinoma

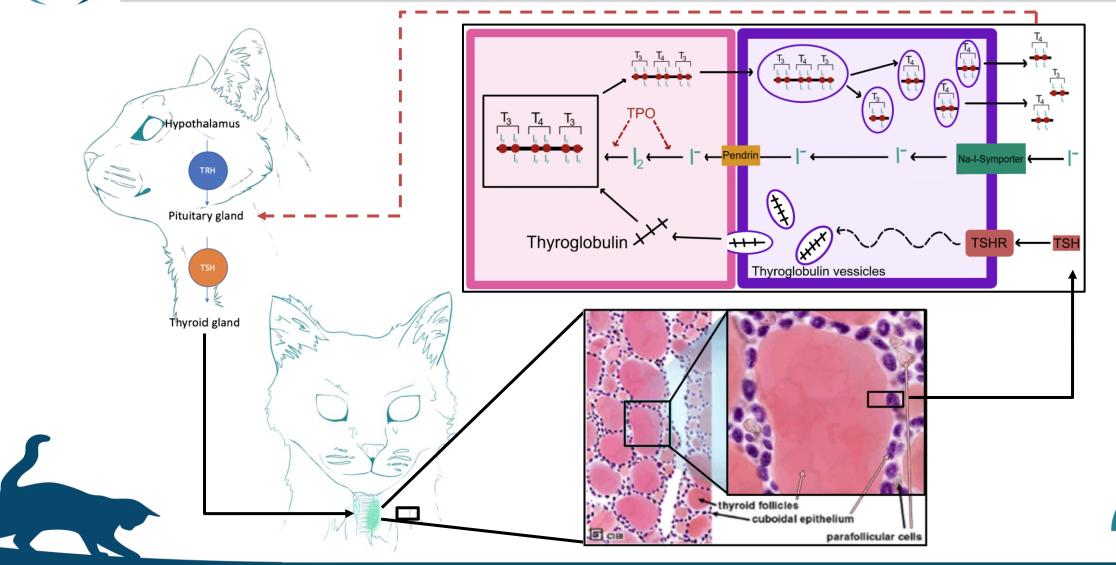
Advantages


Potentially curative Definitive histopathological diagnosis

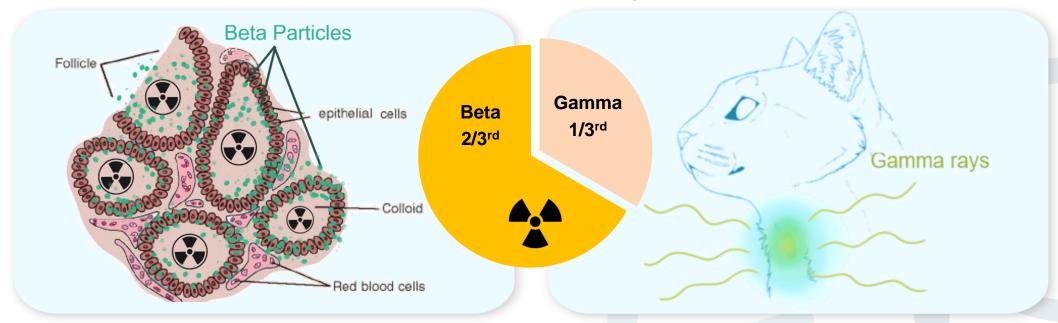
Disadvantages

Expensive in short term
Requires general anaesthesia
70-90% require bilateral thyroidectomy =
possible concurrent hypothyroidism and
hypoparathyroidism




150

Radioactive Iodine Therapy (I¹³¹)


When four more neutrons are added to a stable nucleus to create another form of iodine, it becomes unstable and therefore is considered a radioisotope.

Radioactivity

Beta particles: fast-moving electrons emitted by radioactive decay

Destroy the cells from the inside
Only penetrate tissue 1-2mm, so surrounding
structures preserved

Gamma rays: radiation of the shortest wavelength and highest energy

Requires lead protection and can pass completely through the body

Advantages

95% require one treatment for cure of hyperthyroidism

Not invasive

Increased survival times compared to medical management (5 years vs 2 years respectively)

Disadvantages

Expensive in short term

Separation from owner for 5 nights + limited contact for 2 weeks

2% will require thyroid hormone supplementation

Irreversible

Advantages

95% require one treatment for cure of hyperthyroidism

No invasive procedures or ongoing medications (in >90%)

Increased survival times compared to medical management

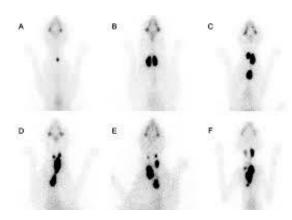
Median Survival Times

Methimazole only: ~2 years I¹³¹ treatment: ~5 years

** Note – possible population bias considering patients with significant comorbidities are less likely to undergo I¹³¹ treatment

Disadvantages

Expensive in short term


Separation from owner for 5 nights + limited contact for 2 weeks

2% will require thyroid hormone supplementation

Irreversible

¹³¹I administered (cpm) =
$$\frac{\text{Inital}^{131}\text{I}(\mu\text{Ci})}{^{131}\text{I}ds(\mu\text{Ci})} \times ^{131}\text{I}ds \text{ (cpm)}$$

I uptake (%) =
$$\frac{\text{Thyroid counts (cpm)} - \text{Thigh counts (cpm)}}{131 \text{I administered (cpm)}} \times 100.$$

Veterinary Radiology & Ultrasound

Original Investigation

THYROID SCINTIGRAPHY FINDINGS IN 2096 CATS WITH **HYPERTHYROIDISM**

Dose Optimisation

Appendix

Scoring system used to select radioiodine dose for treatment of cats with hyperthyroidism

Factor	Classification	Score
Clinical signs *	Mild	1
	Moderate	2
	Severe	3
Serum T ₄ concentration	< 125 nmol/L	1
•••••	125 to 250 nmol/L	2
	> 250 nmol/L	3
Thyroid tumor sizet	$< 1.0 \times 0.5$ cm	1
,	1.0×0.5 to 3.0×1.0 cm	2
	> 3.0 × 1.0 cm	3

*Severity of clinical signs determined on the basis of number and magnitude of clinical signs and duration of illness. †Thyroid tumor size estimated from digital palpation of the thyroid gland; if both thyroid lobes were enlarged, the sizes of both lobes were added together to determine the score.

Cats with a total score of 3. 4. or 5 were treated with a low dose (2.0 to 3.4 mCi; 74 to 130 megabecquerels (MBqi), cats with a total score of 6 or 7 were treated with a moderate dose (3.5 to 4.4 mCi: 130 to 167 MBq), and cats with a total score of 8 or 9 were treated with a high dose (4.5 to 6.0 mCi; 167 to 222 MBq) of radioiodine.

Radioiodine treatment of 524 cats with hyperthyroidism

Mark E. Peterson, DVM, and David V. Becker, MD

Journal of Veterinary Internal Medicine

STANDARD ARTICLE @ Open Access @ (*)

Assessment of serum symmetric dimethylarginine and creatinine concentrations in hyperthyroid cats before and after a fixed dose of orally administered radioiodine

Assessment of treatment outcomes in hyperthyroid cats treated with an orally administered fixed dose of radioiodine

Journal of Feline Medicine and Surger 2020, Vol. 22(8) 744-752 @ The Author(s) 2019 Article reuse guidelines sagepub.com/journals-permissions DOI: 10.1177/1098612X19884155 iournals.sagepub.com/home/ifm

This paper was handled and processed by the European Editorial Office (ISFM) for publication in JFMS

(\$)SAGE

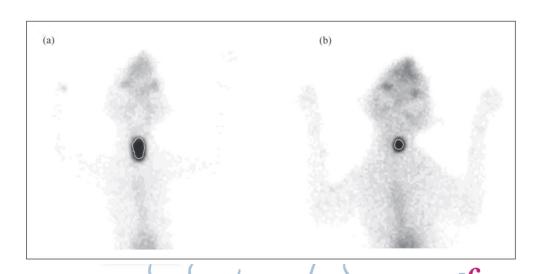
Open Veterinary Journal, (2022), Vol. 12(2): 231-241 ISSN: 2226-4485 (Print)

ISSN: 2218-6050 (Online)

Original Research DOI: 10.5455/OVJ.2022.v12.i2.11

Submitted: 26/11/2021

Accepted: 21/03/2022


Published: 05/04/2022

Outcome of radioiodine therapy for feline hyperthyroidism: Fixed dose versus individualized dose based on a clinical scoring system

Dose Optimisation – Scintigraphy Based

Original Article

Scintigraphic thyroid volume calculation in hyperthyroid cats

Journal of Feline Medicine and Surgery 14(12) 888–894 © ISFM and AAFP 2012 Reprints and permission: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1098612X12458427 ifms.com

(\$)SAGE

How does it work?

- Tracer uptake
- Known effective half-life of I¹³¹
- Proposed weight of cat's thyroid gland

Does calculated thyroid volume = amount of I¹³¹ required?

Unfortunately it isn't that easy

Veerle Volckaert, Eva Vandermeulen, Jimmy H Saunders, Anaïs Combes, Luc Duchateau and Kathelijne Peremans

Dose Optimisation – Individualised Scoring System

Appendix

Scoring system used to select radioiodine dose for treatment of cats with hyperthyroidism

Factor	Classification	Score
Clinical signs*	Mild	1
	Moderate	2
	Severe	3
Serum T ₄ concentration	< 125 nmol/L	1
•••••	125 to 250 nmol/L	2
	> 250 nmol/L	3
Thyroid tumor sizet	$<$ 1.0 \times 0.5 cm	1
	1.0×0.5 to 3.0×1.0 cm	2
	> 3.0 × 1.0 cm	3

^{*}Severity of clinical signs determined on the basis of number and magnitude of clinical signs and duration of illness. †Thyroid tumor size estimated from digital palpation of the thyroid gland; if both thyroid lobes were enlarged, the sizes of both lobes were added together to determine the score.

Cats with a total score of 3, 4, or 5 were treated with a low dose (2.0 to 3.4 mCi; 74 to 130 megabecquerels [MBq]), cats with a total score of 6 or 7 were treated with a moderate dose (3.5 to 4.4 mCi; 130 to 167 MBq), and cats with a total score of 8 or 9 were treated with a high dose (4.5 to 6.0 mCi; 167 to 222 MBq) of radioiodine.

Radioiodine treatment of 524 cats with hyperthyroidism

Mark E. Peterson, DVM, and David V. Becker, MD

How does it work?

Summation of clinical signs + serum T_4 concentration + thyroid tumour size = a score out of 9

For example:

Clinical signs*	Mild Moderate	1)
Serum T ₄ concentration	Severe < 125 nmol/L 125 to 250 nmol/L	3 1 2
Thyroid tumor sizet	> 250 nmol/L < 1.0 × 0.5 cm 1.0 × 0.5 to 3.0 × 1.0 cm > 3.0 × 1.0 cm	(3) (2)
	2 0.0 A 1.0 GH	= 6/9

The cat has a score of 6/9, so is treated with a moderate dose of 130-167 MBq

Dose Optimisation – Individualised Scoring System

TABLE 1 A scoring system was used to calculate the dose of radioactive iodine administered to each cat

Scoring system before 2015			
Score	Clinical signs	Serum total thyroxine concentration	
1	Mild	<125 nmol/L	
2	Moderate	125-250 nmol/L	
3	Severe	>250 nmol/L	
Total sco	Total score Dosage		
<3		111 MBq	
4		148 MBq	
5-6		185 MBq	

Note: A score was assigned to both TT4 concentration at the time of hospital admission and the clinical signs. These were then added together and on the basis of that figure the dose was given.

TABLE 2 The scoring system used to calculate the dose of radioactive iodine administered to each cat was modified in 2015

Scoring system after 2015		
Score	Clinical signs	Serum total thyroxine concentration
1	Very mild/none	<90 nmol/L
2	Mild	90-125 nmol/L
3	Moderate	125-250 nmol/L
4	Severe	>250 nmol/L
Total score		Dosage
2		74 MBq
3-4		111 MBq
5-6		148 MBq
7-8		185 MBq

DOI: 10.1111/jvim.16161

STANDARD ARTICLE

Journal of Veterina

Treatment failure in hyperthyroid cats after radioiodine (I-131) injection

Deirdre Mullowney¹ | Yu-Mei Chang² | Barbara Glanemann¹ | Harriet M. Syme¹

Treatment failure defined as persistent hyperthyroidism following I¹³¹

Conclusions & Clinical Importance:

Cats with TT4 >150 nmol/L at discharge might be candidates for immediate repeat treatment.

Dose Optimisation – Fixed Dose

Many doses have been trialled, ranging from 74 to 185 MBq

MBq MBq MBa Dose: Dose: Dose: Published: 05/04/2022 Serum thyroxine concentrations following fixed-dose Original Article Outcome of radioiodine therapy for feline hyperthyroidism: Fixed dose versus radioactive iodine treatment in hyperthyroid cats: 62 cases individualized dose based on a clinical scoring system (1986-1989). 2020 Vol. 22(8) 744-752 Assessment of treatment outcomes © The Author(s) 2019 Article reuse guidelines Joana Matos^{1†}, Bérénice Lutz^{1*†} , Lisa-Maria Grandt¹ , Felix Meneses², Daniela Schweizer-Gorgas² , Thierry in hyperthyroid cats treated with 148 168 Francey¹ @ and Miguel Campos¹ DOI: 10.1177/1098612X19884158 Meric SM 1, Rubin SI an orally administered fixed dose ¹Small Animal Internal Medicine Division, Department of Clinical Veterinary Medicine, Vetsuisse Faculty University This paper was handled and processe by the European Editorial Office (ISFM) for publication in JFMS of radioiodine of Rern Rern Switzerland Author information ²Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, (\$)SAGE Switzerland Journal of the American Veterinary Medical Association, 01 Sep 1990, 197(5):621-623 †These authors contributed equally to this work. PMID: 2211313 Lucia Yu¹, Lauren Lacorcia¹, Sue Finch² and Thurid Johnstone¹ Original Article BSAVA Journal of Feline Medicine and Surgery 2018, Vol. 20(6) 528-534 Survival times for cats with © The Author(s) 2017 Reprints and permissions: Ultra-Low Doses of Radioiodine Are Highly Effective in hyperthyroidism treated with sagepub co uk/journalsPermissions na DOI: 10.1177/1098612X17718416 Restoring Euthyroidism without Inducing 74 a 3.35 mCi iodine-131 dose: iournals.sagepub.com/home/ifm Thyroid and renal function in cats following low-dose radioiodine This paper was handled and processe by the European Editorial Office (ISFM) for publication in JFMS a retrospective study of 96 cases Hypothyroidism in Most Cats with Milder Forms of (111Mbq) therapy SSAGE Hyperthyroidism: 131 Cases N. C. Finch X. J. Stallwood, S. Tasker, A. Hibbert Marie Vagney¹, Loic Desquilbet², Edouard Reyes-Gomez^{3,4}, First published: 22 July 2019 | https://doi.org/10.1111/jsap.13057 | Citations: 13 Peterson M.F. and Broome M.R. Françoise Delisle¹, Patrick Devauchelle¹, Maria Isabel Rodriguez-Piñeiro¹, Dan Rosenberg¹ and Pauline de Fornel-Thibaud¹ Conference Proceedings, (2014), American College of Veterinary Internal Medicine, Nashville

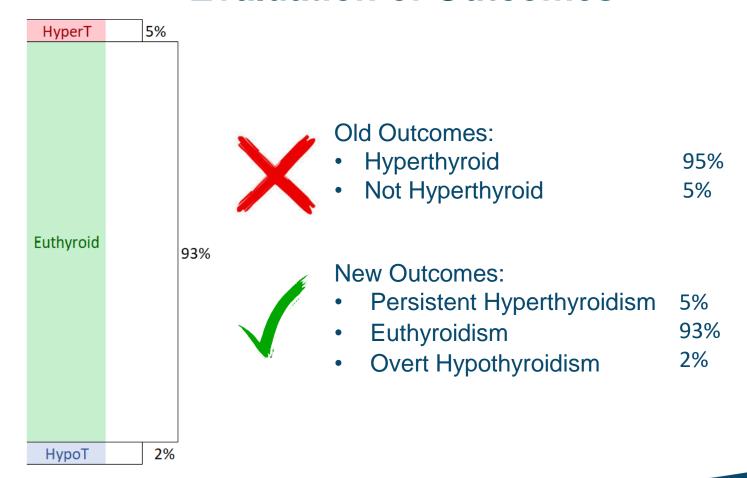
Dose Optimisation

At WAVES, we will use an individualised clinical scoring system

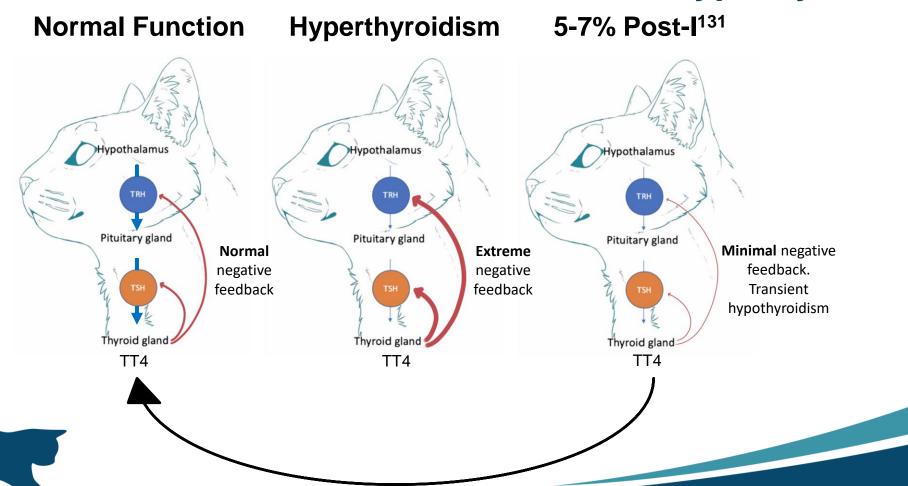
Evaluation of Outcomes

Treatment SUCCESS 95%

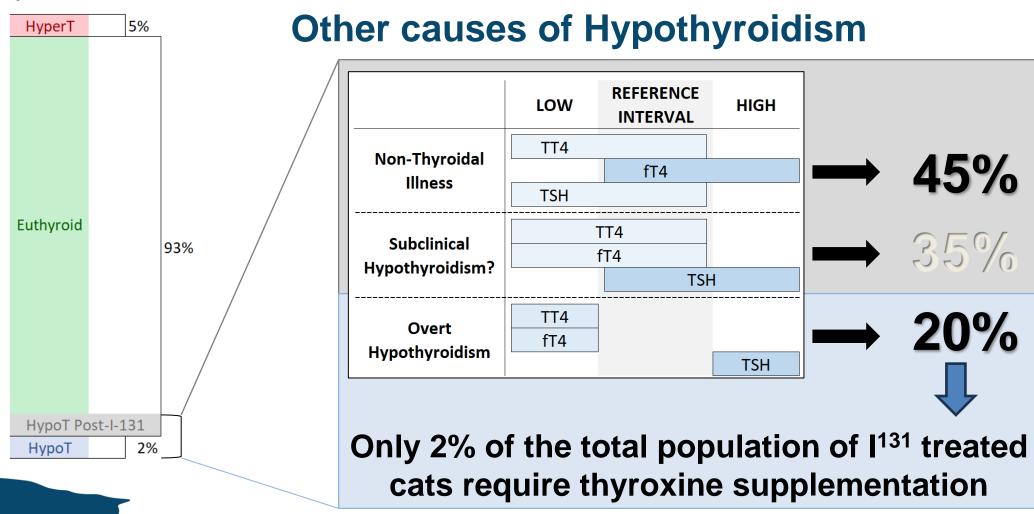
Cats that are no longer hyperthyroid Hypothyroid?


Treatment FAILURE 5%

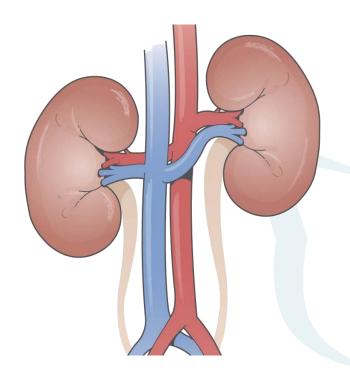
Cats that remain persistently hyperthyroid



Evaluation of Outcomes



Evaluation of Outcomes – Transient Hypothyroidism



Adverse Effects

Renal disease

"Unmasking" preexisting disease

Hypothyroidism

Causes renal impairment

Adverse Effects: Renal Disease

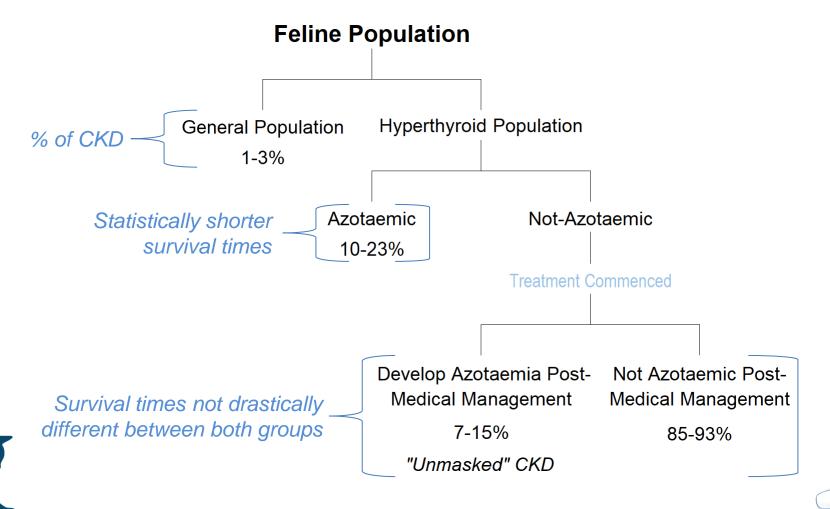
Renal Function Markers

Creatinine
Blood Urea Nitrogen (BUN)

SDMA
Urine Specific Gravity

Hyperthyroidism & renal blood flow

- Raises cardiac output (chronotropic, inotropic)
- Activation of RAAS → increased blood volume
- Renal blood flow increased!


What about SDMA?

- Also affected by GFR and so can be artefactually lowered (similar to creatinine)
- SDMA has decreased specificity for determining renal function before and after I¹³¹
 - Extra-renal factors interfere with SDMA

Adverse Effects: Renal Disease

ps://clinicalrenal.com/

s://www.drawingforall.ne

Adverse Effects: Renal Disease

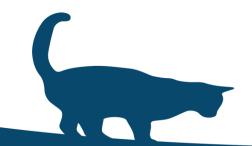
You can assess the possibility of CKD before I¹³¹

→ Creatinine, BUN, USG

If the cat is already on medical management (such as methimazole), the thyroid status will be known prior to I¹³¹

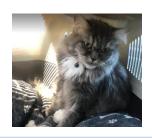
Otherwise, can treat with medical management first if concerned about renal dysfunction

Who is a candidate for I¹³¹?



- IRIS stage I-II when euthyroid
- Not on daily medications

- Overt renal disease when hyperthyroid
- On daily medications
- Serious concurrent medical conditions



The Process

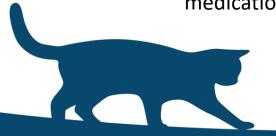
Initial consultation

Dose calculated and ordered the week prior

Dose administered 12pm Monday

Discharged home Saturday

Further diagnostics if required Stop medications!



Hospitalised 8am Monday

Hospitalised for 5 nights

Assess suitability of the patient

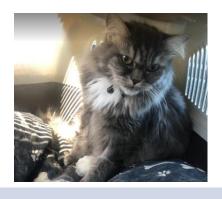
Discuss process & costs with

client

Diagnostics & stop medications

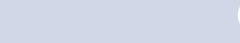
Based on the individual cat and what has already been done with the referring vet, further diagnostics may be required.

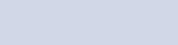
Anti-thyroid medications and iodine restricted diets will then be discontinued


Dose calculation

Once the medications/diet have been discontinued for 2 weeks, the TT₄ will be re-measured and the dose calculated the week before I¹³¹ treatment is scheduled

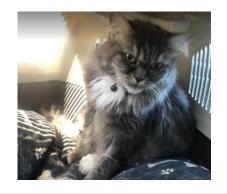
Before Hospitalisation





Hospitalised 8am

Monday


Dose administered 12pm Monday Hospitalised for 5 nights

Discharged home Saturday

Hospitalisation Period

Hospitalised 8am Monday

Admitted to the hospital at 8am

Fasted overnight and receive anti-nausea medication (maropitant) → reduce risk of vomiting the radioactive iodine capsule.

If fractious and pose a risk to themselves and the staff → sedatives (i.e. gabapentin) will be considered

Dose administered 12pm Monday

PPE is very important!

Always given at 12pm

Dose calculated to equate for radioactive decay during transit from the laboratory to the clinic

Radiation sensor – assess cat + test the room and staff for contamination

Trap door system to rotate out waste without needing to touch it

Acceptable timeframe to reduce radiation exposure risk is 5 days

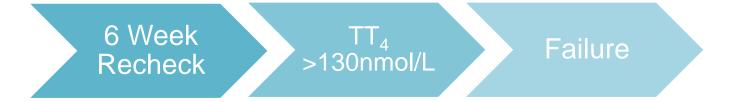
At Home Care for 2 Weeks

- 1. Cat MUST stay indoors
- Close contact for <10 minutes per day NO children or pregnant women should handle the cat during this time
- 3. Thoroughly wash hands after handling the cat, food/water bowl, & litter tray
- 4. Litter → Store for 3 months, then normal disposal
- 5. Wash all bedding separately in a washing machine

Monitoring

Monitoring Diagnostics

- Blood pressure measurement
- Urinalysis
- Thyroid and renal function tests


Determine Thyroid Status

- Euthyroidism
- Hypothyroidism (Transient vs Permanent)
- Persistent Hyperthyroidism

High TT₄

Treatment failures usually determined after 6 months

Treatment failures are more likely to be thyroid carcinomas

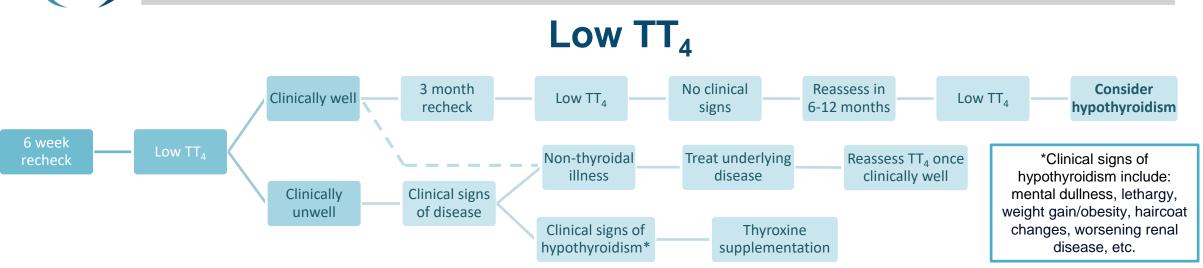
Scintigraphy or histopathology may be required after 6 months

6 Weeks Recheck 3 Months Recheck 6 Months Recheck TT₄ still above reference

Failure

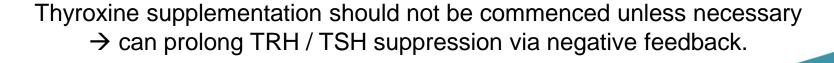
Azotaemia

6 Weeks


Azotaemia

Determine Thyroid Status: Low TT₄ or Euthyroid?

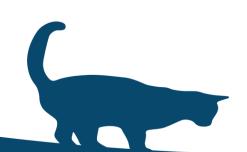
- Low TT₄
 - 1. May require thyroxine supplementation depending on the degree of hypothyroidism and the degree of azotaemia
 - 2. The hope would be to wean off thyroxine in case thyroid function has begun to return
- Euthyroid → management for renal disease based on IRIS guidelines


150

Radioactive Iodine Therapy (I¹³¹)

A low TT₄ measurement after treatment is difficult to interpret and is highly patient dependent.

Transient hypothyroidism is to be expected to a degree.



Conclusion – Radioactive Iodine (I¹³¹)

- 1. Safe and effective treatment option
- 2. Targeted approach (normal thyroid tissue left alone)
- 3. High success rate
- 4. Minimal adverse effects
- 5.Long-term efficacy

Now you know what's HOT about hyperthyroidism!

Thank you for listening

Tiarni Johnston BVSc (Hons) MANZCVS (SAIM)
Internal Medicine Resident

